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Abstract
Automatic Speaker Verification (ASV) systems are increas-

ingly vulnerable to sophisticated spoofing attacks, particularly
those involving deepfake audio. This paper presents our ap-
proach to the challenges in Task 1 of the ASVSpoof 2024 com-
petition, focusing on deepfake detection to classify utterances is
spoof or bonafide. To enhance model robustness, we employed
self-supervised learning (SSL) models, specifically fine-tuning
WavLM for feature extraction due to its superior performance
in noisy environments. We utilized RawBoost augmentation
techniques to simulate real-world audio distortions. Experimen-
tal results demonstrate that our approach significantly improves
detection accuracy, achieving an EER of 2.85% with WavLM
and further reducing to 2.69% with a fusion of WavLM and
Wav2Vec2 models.
Index Terms: Deepfake Detection, RawBoost, WavLM

1. Introduction
Automatic Speaker Verification (ASV) systems are critical for
ensuring the security and reliability of voice authentication pro-
cesses. However, these systems are increasingly vulnerable to
spoofing attacks, particularly those involving deepfake audio,
which can convincingly mimic the speech characteristics of a
genuine user. Therefore, we conduct improvement studies and
tests through the dataset and evaluation system of ASVSpoof
2024. This competition aims to advance the state-of-the-art
in ASV spoofing countermeasures through rigorous evaluation
and benchmarking. This paper focuses specifically on Task 1:
Deepfake Detection.

The data utilized for this task includes metadata for each
utterance, such as gender, attack type, and label, sourced from
the training part of the Multilingual Librispeech dataset. The
input data comprises FLAC audio files, and the goal is to clas-
sify each utterance as spoof or bonafide. Performance is evalu-
ated using three primary metrics: the Minimum Detection Cost
Function (minDCF), the Cost of Log-Likelihood Ratio (Cllr),
and the Equal Error Rate (EER).

During our experiments, we encountered challenges with
model convergence using the ASVSpoof 2024 training set
alone. Consequently, we participated in the open track, com-
bining data from previous years to enhance model training. The
use of derived datasets and pre-trained models such as Libri-
Light, MLS English, and MUSAN was prohibited. However,
data from CommonVoice, previous ASVspoof editions (exclud-
ing VCTK), and LibriSpeech were permitted, allowing for a
comprehensive and diverse training dataset.

In this paper, we present our approach to deepfake detec-
tion, detailing our data preparation, augmentation strategies,
and model architectures. Our methodology leverages advanced

techniques in self-supervised learning (SSL) and sophisticated
model structures to achieve robust and accurate detection of
deepfake audio. The experimental results demonstrate signifi-
cant improvements over baseline models, highlighting the effec-
tiveness of our proposed solutions in addressing the challenges
of ASV spoofing.

2. Related Work
Spoofing audio can be detected through explicit features, as
demonstrated by BTS-E [1], audio deepfake detection using
breathing-talking-silence encoder. This method leverages nat-
ural human sounds, such as breathing, which are challenging to
synthesize using text-to-speech technologies. BTS-E employs
three simple Gaussian Mixture Models (GMM) for each class:
breathing, talking, and silence.

As methods for generating human-like voices, both in terms
of naturalness and intonation, continue to improve, new ap-
proaches are being developed to update and counteract the latest
attack techniques. For instance, CodecFake[2] utilizes AASIST
trained with custom codec data. Similarly, AI-Synthesized
Voice Detection Using Neural Vocoder Artifacts[3] employs
RawNet[4] as its backbone and constructs a new dataset us-
ing contemporary vocoders, incorporating both binary loss for
bonafide and spoof classification and vocoder classification
loss.

In addition to fusion models like the combination of
ResNet18, LCNN9, and RawNet2 used by the top team
T23 SpeechPro in 2021 [5], new approaches have been
proposed. These include SE-Rawformer which leveraging
positional-related local-global dependency [6], a transformer-
based model that outperforms AASIST, and HM-Conformer[7],
a Conformer-based system with hierarchical pooling and multi-
level classification token aggregation methods, which achieved
a 15.71% EER in ASVSpoof 2021 [8] without the need for
model fusion.

Graph-based spectro-temporal dependency modeling intro-
duced in 2023 [9], achieved an EER of 0.53%, outperforming
AASIST’s 0.83% EER on the logical access ASVspoof 2019
task [10]. This model segments spectral features into patches
and constructs a graph where nodes are patch embeddings, and
edge weights are computed using the dot-product of nodes. This
approach is based on graph neural networks, similar to AASIST.

Beyond traditional feature extraction methods, a new direc-
tion involves using pre-trained semi-supervised learning models
for speech feature extraction. Automatic speaker verification
spoofing and deepfake detection using wav2vec 2.0 [11], uses
AASIST as its backbone and replaces the sinc-layer front-end
with a wav2vec 2.0 model, it combines this with a self-attentive
aggregation layer and adds nuisance variability on-the-fly to the
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Figure 1: Spectro-Temporal Graph Attention with WavLM Architecture Diagram

Feature Extractor Backbone Model EER minDCF actDCF Cllr

Wav2Vec2 Graph Attention 4.26 0.1002 0.2255 0.3625

Wav2Vec2 Conformer 4.49 0.1255 0.1676 0.6403

WavLM Graph Attention 2.85 0.0816 0.1227 0.5552

Fusion (Wav2Vec2 and WavLM) Graph Attention 2.69 0.0764 0.1622 0.2440

Table 1: Experimental Results for Progress Phase

existing training data.
To ensure models are robust and perform well across

various domains, augmentation methods have been proposed,
with RawBoost being a notable example. This method ap-
plies convolutive noise and impulsive signal-dependent addi-
tive noise strategies, which are particularly effective for the LA
database as they simulate the convolutive and device-related
noise sources characteristic of telephony applications. Addi-
tionally, stationary signal-independent additive noise, randomly
colored, is used to counteract the effects of compression in the
DF database. Furthermore, the Radian Weight Modification
approach [12] in Self-Adaptive Continual Learning for Audio
Deepfake Detection represents another significant contribution
to the field.

3. Method
3.1. Self-supervised Feature Extractor

WavLM [13] is a versatile pre-trained model designed for robust
speech processing, excelling in both clean and noisy environ-
ments for tasks like speech recognition, speaker identification,
and emotion recognition. To enhance the generalization capa-
bility and robustness of our spoofing detection model, we uti-
lized self-supervised learning (SSL) models to extract features
from raw waveforms, opting for WavLM due to its superior
performance in noisy environments, compared to wav2vec 2.0.
During pretraining, the model processes raw audio input using
a multi-layer convolutional feature encoder, transforming a se-
quence {xt}Tt=1 of T time windows to output {zt}Tt=1.These
representations are subsequently altered with noise and over-
lapping effects before being masked and passed into the Trans-
former encoder, which produces a sequence of hidden states
{hl}Ll=1, where L denotes the number of Transformer layers.
Moreover, the model integrates gated relative position bias,
which improves its capacity to attend to pertinent speech fea-
tures effectively. WavLM is trained using a masked speech de-
noising and prediction task. This approach inherently captures
speaker and speech-related features, as the training objective in-

volves predicting pseudo-labels for the masked portions of the
original speech.

Since the evaluation set contains audio used to train
WavLM large, we conducted our experiments fairly by only
evaluating with WavLM-base. We fine-tuned the WavLM base
model using the LibriSpeech dataset, averaging the outputs of
its layers to create feature vectors with a dimensionality of 768
as in Figure 2.

3.2. Spectrotemporal Graph Attention Network

Building on the AASIST framework, we replaced the original
sinc-layer front-end with the WavLM model. This backbone
spectrotemporal graph attention network takes the hidden fea-
tures input extracted from the pretrained WavLM model. These
features are passed through a linear post-processing layer to
reduce the feature dimension before being fed into RawNet2
[14], which consists of 6 residual blocks. This structure en-
ables learning high-level features that represent of channels,
spectral, and time frames. Spectral and temporal representa-
tions are then created using max pooling functions and pro-
cessed through a graph attention network. These representa-
tions are combined into a heterogeneous spectrotemporal graph
using heterogeneous stacking graph attention layer - HSGAL.
The nodes of this graph are further fed into two parallel HS-
GAL modules to learn spoofing features before merging into a
final graph. A set of operations known as Readout is performed
on nodes of this graph, including node-wise maximum and av-
erage for the spectral and temporal nodes, respectively. Each
operation produces a 32-dimensional feature, which then con-
catenated and results in a 160-dimensional vector. This vector
is then passed through a fully connected layer to produce the
two classes: bonafide and spoof. Additionally, we also experi-
mented with replacing Graph HS-GAL with a Conformer [15]
and integrated a Retention Network [16] to enhance model com-
plexity and improve inference speed.
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Figure 2: Pretrained WavLM Based Feature Extractor

3.3. Loss for AntiSpoofing

Our loss function strategy included a weighted cross-entropy
loss to address class imbalance between the Bonafide and Spoof
classes, alongside OCSoftmax loss configured to focus on de-
tecting bonafide cases more accurately [17]. In practice, new
voice attack methods are constantly being developed, leading to
the emergence of unknown attacks. If the original Softmax loss
for binary classification is used, the model may overfit to the
attack methods present in the training set. OCSoftmax (One-
Class Softmax) is a specialized variant of the standard softmax
function that focuses on detecting bonafide audio and isolating
spoofing attacks.

LWCE = − 1

N

N∑
n=1

[w1 · yn · log(pn,1) + w0 · (1− yn) · log(pn,0)]

pn,c =
exp(xn,c)

exp(xn,0) + exp(xn,1)
for c ∈ {0, 1}

LOCS =
1

N

N∑
i=1

log
(
1 + eα(myi

−ŵ0·x̂i)(−1)yi
)

Despite exploring additional methods like Gradient Rever-
sal Layers [18], EfficientNet Attention [19], Spec-ResNet, and
various fusion techniques, the SSL-based approach consistently
yielded the best results, demonstrating the effectiveness of com-
bining advanced feature extraction and model architecture en-
hancements in detecting audio spoofing.
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4. Experiment
We trained our models using 4-second audio segments, pre-
processed with random padding and silence trimming, and aug-
mented with RawBoost, which includes linear and non-linear
convolutive noise, impulsive signal-dependent additive noise,
and stationary signal-independent additive noise.

For the weighted cross-entropy loss, the weights assigned
to bonafide and spoof classes are 0.9 and 0.1, respectively. For
the OCSoftmax Loss, the scaling factor α is set to 20, and the
margins for real and fake audio are set to 0.9 and 0.2, respec-
tively, as suggested in the original paper.

The experiment was conducted with a batch size of 24, uti-
lizing distributed training across two GeForce RTX 4090 GPUs
and 10 CPU cores.

To evaluate and compare the model’s performance, we fo-
cus on the EER metric, which is the point where the system’s
False Acceptance Rate (incorrectly accepting spoofed audio)
and False Rejection Rate (incorrectly rejecting real audio) are
equal. A lower EER indicates higher model accuracy. The
experiments results are summarized in the following table, the
WavLM with spectro-temporal graph attention and OCSoftmax
achieved a significantly lower EER of 2.85%. Additionally, the
fusion of WavLM and Wav2Vec2 models, weighted at 70% and
30% respectively, further reduced the EER to 2.69%, demon-
strating the effectiveness of combining robust feature extrac-
tion with advanced model architectures and augmentation tech-
niques.

Additionally, experiments using Conformer instead of the
graph attention network indicated that it did not improve the
model’s ability to detect spoofing.

5. Conclusion
In this study, we addressed the challenge of deepfake audio de-
tection in ASV systems, as part of the ASVSpoof 2024 com-
petition. By leveraging advanced self-supervised learning mod-
els and robust augmentation techniques, we developed a detec-
tion framework that significantly enhances performance. The
fine-tuning of WavLM for feature extraction, combined with
Spectro-Temporal Graph Attention Networks, proved highly ef-
fective in improving model robustness and accuracy. Our exper-
imental results, demonstrating an EER of 2.85% with WavLM
and 2.69% with model fusion, highlight the potential of our ap-
proach in real-world applications. Future work will focus on
optimizing model architecture with different hyper-parameters
and exploring additional augmentation strategies.
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