
Statistics and Frontend Improvements for Voice of
Southern Speech Synthesis

Dang-Tam T. Le
Advance Program in Computer Science

Faculty of Information Technology
VNU-HCM, University of Science

ltdtam@apcs.vn

Do Tri Nhan
Advance Program in Computer Science

Faculty of Information Technology
VNU-HCM, University of Science

dtnhan@apcs.vn

Abstract—Text Normalization is an important step in Text-to-
Speech systems, helping to filter noise and making the input to be
consistent with only Vietnamese syllables. Many Text-To-Speech
(TTS) models for Vietnamese are developed. This report aim to
analyze the performance of Voice of Southern TTS system and
take an overview about Vietnamese TTS. Some statistics and
improvements for Frontend of VOS are also given based on the
popular syllables nowadays. A python library called ViNorm is
also shared for future Vietnamese text-to-speech research.

I. INTRODUCTION

The main task of the front-end of the TTS system is to
standardize the text for the back-end system, the input is the
raw text, we need to decide how to verbalize non-standard
words, convert numbers, abbreviations, and words that cannot
be pronounced into syllables, including dots, commas. [1].

Every language needs different normalization processing
methods because this problem is language-dependent [2]. It
is impossible to build a completely normalized Text normal-
ization because the language is ambiguous and evolves over
time [3].

A. Voice of Southern and other TTS systems in Vietnam

1) Voice of Southern System: Voice of Southern (VOS) is a
TTS system developed by AILab from VNU-HCM University
of Science. The first version of VOS (1.0) was released in
2009, followed by the 2.0 and 3.0 version in 2010 and 2012
respectively. The latest update of VOS is in 2017 with per-
formance and quality improvement. The current VOS support
instant response (1

15 realtime) with three different Vietnamese
accents: Southern, Central and Northern. [4]

2) Other TTS systems: We divide list of TTS systems into
two categories: one that supports Vietnamese and counterparts.

TTS system which does not support Vietnamese:
• Vocalware: Vocalware is a cloud based API for integrat-

ing real time Text-To-Speech into online web sites and
mobile applications. Over 100 TTS voices in over 20
languages, offer APIs for multiple platforms, with demo
Oddcast [5]

• Nuance TTS with 119 voices, 53 languages available to
support, 25 years of Nuance TTS expertise [6]

• NaturalReader is a professional text to speech program
that converts any written text into spoken words. It is

a downloadable text-to-speech software for personal use,
can read any text such as Microsoft Word files, webpages,
PDF files, and E-mails, 74 TTS voices. [7]

• Microsoft Sam TTS Generator is an online interface for
part of Microsoft Speech API 4.0 which was released in
1998. [8]

• Waston - IBM cloud: understands text and natural lan-
guage to generate synthesized audio output complete with
appropriate cadence and intonation, available in 13 voices
across 7 languages [9]

• iSpeech : 27 languages, 3 reading speeds [10]
• Amazon Polly, uses advanced deep learning technologies

to synthesize speech that sounds like a human voice, with
29 languages [11]

TTS system which supports Vietnamese:

• Text-to-Speech on Google Cloud, it converts text into
human-like speech in more than 100 voices across 20+
languages and variants. It applies groundbreaking re-
search in speech synthesis (WaveNet) and Google’s pow-
erful neural networks to deliver high-fidelity audio, with
Vietnamese, there are 4 types of voice. [12]

• Responsivevoice is one of the most popular html5 text-
to-speech API, support 51 languages. [13]

• VBee is a solution development, data digitalization and
artificial intelligence leaded by Dr. Nguyen Thi Thu
Trang. VBee covered 7 Vietnames accents. [14]

• FPT.AI Speech: Based on Amazon’s cloud, supporting
Nothern accent(male and female voices), Central (only
male) and Southern (only female). [15]

• Text2speech of VTCC developed by Viettel which sup-
ports Northern accent (2 female voices and 1 male voice),
Central voices are not supported and Southern (1 male
and female voices). [16]

• eSpeak is a compact open source software speech syn-
thesizer based in Vie-HTS project (Vietnamese Human-
based Text-to-Speech) [17]

• Text2Voice developed by FIBO Tecchnology Company
which allow voice’s speed and automatic innotation
adding [18]

• Vnspeak TTS by Le Anh Tuan - Vietnamese Multi-
platform Text-to-Speech Engine, supports multiple plat-

Number VOS VBEE FPT.AI Google Responsive
Normal text 5 100% 100% 100% 100% 100%
Time-Date 15 73.30% 33,3% 53.30% 80% 80%
Acronyms 12 41.6% 66.60% 83.30% 75% 75%
Proper Noun 5 20% 60% 40% 100% 100%
Address 5 20% 40% 40% 40% 40%
Measurement 10 70% 100% 60.00% 70% 70%
Teen code 5 20% 20% 40% 40% 20%
Upper-
Lowercase

2 50% 0% 50% 100% 100%

Mathematics 6 50% 66.60% 83.30% 83.30% 83.30%
Cross
language

5 20% 80% 60% 100% 100%

Special case 5 60% 40% 60% 60% 60%
Total 75 52% 59% 61% 73% 72%

Table I
OVERALL RESULT

forms, such as Windows 32 bit, Windows 64 bit, Linux
and other embedded systems. [19]

In this paper, we conducted the survey about the text
normalization of the current Vietnamese TTS systems to get
an overall look at section 2. Some of the major improvements
to the VOS Frontend are described in section 3 and statistics
about Vietnamese syllables usage in current online newspapers
in section 4. Section 5 and 6 are the results obtained based
on test cases and suggest some improvement solutions in the
future.

II. SURVEY OF VIETNAMESE SPEECH SYNTHESIS

We conducted experiments with the TTS systems which
had proved to have significant result on basic TTS tasks. Our
surveys and comparisons are only intended to give an overview
of current speech synthesis systems for Vietnamese, and are
only valid at the time of the survey because those systems are
still updated and maintained. We choose 5 TTS systems:

TTS system that support Vietnamese
• Google TTS WaveNet [12]
• Responsivevoice [13]
TTS system that developed only for Vietnamese
• VOS [4]
• VBee [14]
• FPT.AI [15]

A. Test cases

The test cases we provide aim to test the performance of
the VOS systems. It consist of many sentences which are used
on regular basis. We categorize them into 9 semiotic classes
[20] [21]:

1) Normal text : Normal sentences which contains only
letters.

2) Addresses: Addresses in Vietnam. This is a challenging
task because of the inconsistent in the way to write and
read an address. Many cases contain multiple numbers
mixed in letter characters.

3) Unit of measurement: This is a basic requirement of an
TTS system because unit of measurement is widely used
on variety kinds of document. There are many units,
some easily leading to confusion with common words or

between them. Units can be grouped together to create
new units, resulting in the complexity of separation and
identification.

4) Time-Date: There are many ways to represent time,
which leads to confusion with mathematical patterns.
Time and date come in many forms, the most typical of
which is "From-To".

5) Acronyms: The main challenge with acronyms is
whether the TTS system should pronounce the full word
that acronyms stand for or pronounce letter by letter. We
analyze the performance of those systems on this test
case based on the context of the document.

6) Teencode: Teencode is words that used in social net-
work and messenger applications, it contains acronyms
combined with special characters. This is very difficult
test cases, just like the mis-spelling correction problem,
however, not a requirement for every TTS system to
implement.

7) Upper-Lowercase recognizing: Some special words have
different pronunciation when written in uppercase or
lowercase, especially unit of measurements.

8) Proper Noun: Common English proper nouns.
9) Mathematics: Mathematics formulas.

10) Cross language: Document have some English words.
These words is from the dictionary and name of person,
place, etc.

B. Criteria

MOS is the commonly used measure to evaluate a speech
synthesis system [22], but in this survey, we only measure at
the frontend level, we only focus on the text normalization
part, to check the system be able to detect and handle special
cases properly.

• Preserving information, TTS system need to read most of
words in sentences correctly.

• Fluency, the system need to read sentences regular speed
and pause when encountering commas and periods.

• Make the listener easier to understand, they don’t try to
guess the meaning of sentences leads to wrong under-
standing.

• Contextual, sustainable with the plurality of words, result
need to match the context of documents.

C. Results

1) Overall Results: Overall result could be seen in Table I
2) Detail Results: For the detail test cases and result, please

see at: Test cases and detail results
3) Comparison: From test cases provided, we compare

advantage and foible of each system. Google TTS and Respon-
sive is good at multilingual handling but not natural. FPT.AI
has a smooth and fluently voice but limited with some special
cases. VBEE and VOS have many similarities, just different in
rules for special cases, and there are also many shortcomings
when handling abbreviations and cases containing numbers. In
most cases of English, Vietnamese TTS cannot read correctly,
even skip reading English words.

https://drive.google.com/file/d/14PbWPtti-nq4m8w2B0cNFcu2C8K2FoY8/view?usp=sharing

III. PROPOSED METHODS

Text Normalization of Vietnamese Speech Synthesis today
is still building grammars by hand instead of using automatic
inference from large corpora because it has been the lack of
annotated data. [23] To standardize text into readable words,
the TTS system process through two steps, Rule-based and
Dictionary-Checking.

A. Rules with Regular Expression

By using the Regular Expression to catch patterns that
need normalization, which appears frequently in the language,
containing numbers and characters, then replaced by syllables
found in the dictionary. The output of this step is the paragraph
without any digital characters.

Compared to the old VOS-frontend system, we do not lower
the entire input before processing, thus we can handle cases
with different pronunciation for uppercase and lowercase of
the same words, and create a premise for backend processing
when the capitalized words will be emphasized more through
speech synthesis step.

We propose a new set of rules that are more systematic
and general, scalable for future works. Based on the different
contextual characteristics, rules are divided into four main
categories to handle cases need standardization, including:
Special case, Timedate, Address and Mathematical. The pat-
terns in each rule set will be proceeded one by one, browse
through the entire text to match text need normalization, then
return the corresponding normalized string

1) Special cases: These are the rules to capture specific
cases that are out of context, with specific formats, not to
be confused in different contexts, including Phone number,
Football, Website, Email, etc.

• For phone numbers, the identifying feature is a sequence
of numbers starting with 0 or a plus sign, the number
of digits from 10 to 14 digits, with only the characters
[-,., Space] in between. Phone numbers in each country
will have a different way of writing, and in fact there will
be different formats, so the three types of phone number
rules listed are representative. 1 rule in accordance with
international standards, 1 rule in the USA and 1 rule in
the way of writing in Vietnam. After the phone number
is matched, the [-,., Space] marks are omitted, the plus
sign and the numbers are converted into syllable that
represents the character. We also have a pattern for
capturing hotline numbers.

• Website: patterns have identifiable characteristics that
must have prefix is https, www, ftp or Suffix is popular
domains. In order to handle matching matching, each each
letter and character is pronounced, preferably correct over
fluency, don’t read letter to sound like old VOS version.
The word "com" reads the whole word to make it more
natural.

• Email: Use common email pattern, then matching gets
Spell each letter and symbol by English letter, "@" is read
as symbol "a còng", Dot and Slash: is sounded: "chấm"
and "phẩy". If contains "gmail.com" then replace.

• Sport: includes specific formats such as lineups, scores.
With the matching, Hypen-minus and Dot will not be
spelled.

2) Time-date: are rules for capturing phrases that show the
date and time element.

• With the time indicating hours, minutes, and seconds of
the day, we have ways to identify such as Signal of time
as "h, g", suffixed by AM / PM signs, rules to catch
cases of time. need to ensure The validity of time, the
case of invalid time, the system will remain the same for
later processing. If "-" followed by captured regex will be
read as "đến". Finally, "giờ" is added to suitable places
in the replaced string.

• With the times shown in the date include types such
as Typical pattern of the date month year DD / MM
/ YYYY, Contain roman numerals when displaying
the quarter of the year, or Prefix is a word of time:
“Ngày, sáng, trưa, chiều, tối, đêm, hôm, etc”. In
addition, the timedate rules also capture and handle
cases "FROM-TO", cách đơn giản nhất là sau khi
bắt được một cụm Timedate, check phía sau có kí tự
"”khng, ccnpatternnonakhng.Beforestandardization, thematchingisCheckedthevalidityofdateandtimethenadd”ngy””thng””nm”tosuitablepositions.

3) Mathematical: to capture cases containing Normal num-
ber, Floating Point Number, Roman numerals, mathematical
expression, or Unit of measurement.

• With normal number, we implement a function to convert
numbers to letters. However, the normal number not only
consists of successive digits, but also has a way of writing
that splitting them into groups of 3 numbers, separated
by commas, dot or space. This style of writing leads to
confusion with floating point numbers, for example, when
the text contains "2,045", we don’t know whether it is
exactly two thousand and forty five or two point forty
five. For strings longer than 15 characters, each character
will be converted individually, and if the normalized text
of number is too large, the string will be separated by
commas to read more fluently. If there is an "- +" in front
of the string, it will be replaced with "cộng, “trừ”, except
in the case where the number stands at the beginning of
a sentence, "+ -" is treated as a bullet symbols.

• For Floating point numbers, in addition to standard Viet-
namese writing, consider Floating point as a comma,
in fact the dot can also be a Floating point. So we
categorized into two types with floating point: dot or
coma, Floating point is replaced by "phẩy", integer part
is read as normal number and discard frontier zero, with
fractional part, frontier zero is replaced with "không" and
the following numbers read as normal number.

• Unit of measurement are terms that refer to quantities,
percentage or currency, followed by numbers, which can
be an Alphabetic or a symbol. Because the system does
not lower the input text, it can correctly standardize for
upper and lowercase units such as Mbps and MBps, Units
dictionary will distinguish upper and lower case units.
Most units are SI units with metric prefixes, but we only

take common SI units for direct normalization, building a
strict system that can capture the entire SI unit can lead
to confusion with other cases, such as the case "12C",
we are not sure whether it is "Coulomb" or an address.
Besides the usual units, the patterns also need to capture
Unit/Unit formats, matching strings will be checked in
the unit dictionary for mapping out readable words, if
the matching is not in List of Units then we return the
origin matching, keep for later processing. When it is sure
that both sides of the slash are units, the "/" is replaced
by "trên", this will avoid confusion in the case "nam/nữ".
Unit of measurement is also captured as a FROM-TO
pattern, there are two common types which are "10-20
km/h" and "10 km/h - 20 km/h", regular expressions make
sure not to be confused with cases where "-" is read as
"minus". The values are assumed to be positive numbers,
to avoid cases too strictly such as "-20°C - -10°C".

• For Roman numerals, to ensure accuracy does not fail
in capturing, compare to the old VOS, we just consider
uppercase is able to be Roman numerals and alphabet
of Roman is [X, I, V] . [L, C, D, M] are also Roman
characters, but they rarely appear in the text, sometimes
even leading to confusion with acronyms. The Roman
numerals also has a FROM-TO structure, such as "XVI-
XXI", but it is easier to handle and more consistent
than Unit of measurement. The matching is checked for
correctness by converting it into a decimal number, then
converting the result back into roman form to compare
with the original matching, then the matching is converted
to normalized text.

4) Address-Code: Address - Code are rules for capturing
phrases about addresses, locations, codes and all phrases
containing numbers, after this step all standardized text no
longer contains numbers.

• The Political Division contains the terms for the admin-
istrative region abbreviated, The captured phrase will be
mapped with the original phrase.

• Class, Office consists of alphanumeric clusters with pre-
fix is “đường|số|số nhà|nhà|địa chỉ|tọa lạc|xã|thôn|ấp|khu
phố|căn hộ|cư xá|Đ/c” or “phòng|lớp|đơn vị”. The "/" in
matching string is replaced by "xuyệt", the phrase and the
number will be read each character.

• Codenumber: will Match All remain cases contain num-
bers, the matching sequence will trim punctuation at the
front and back of the string. The captured phrases will
be separated into each alphanumeric substring. For each
substring, if it is a fully capitalized letter sequence, it will
be transcribed accordingly, if it contains lowercase letter,
the system will keep that letter clusters and add space
separate from other clusters. If the substring is numeric,
if the length of continuous number string is greater than 4,
each number will be transcribed, otherwise it will read the
whole number as a normal number. Case includes special
character or symbol will be mapped with corresponding
phonetics, but with "-" is not spelled.

B. Dictionary Checking

After running through the rules sets, string just contains
letters, space and special character. This string will be splitted
into segments separated by spaces, each token containing no
space and no special characters before and after of the string.
The system run over each token to validate if it is readable by
checking it in Dictionary Vietnamese syllable Includes 7698
syllables, which are supported by the current VOS-backend.
If the token does not exist, we will look it up in the mapping
dictionary instead, search and replace with the corresponding
word. The check order in the mapping dictionary is based on
the popularity of words between dictionaries to avoid conflicts
(a token is in two Mapping dictionaries).

1) Abbreviations: This mapping dictionary includes 3 dif-
ferent mapping ways, firstly, Acronyms such as "NSƯT,
GDĐT", we have to normalize to its original form. The second
type is Initialisms, including words like STEM and UNESCO,
so we have to transcribe the reading for it. The last type is the
acronyms that need spell each letter such as PNJ, FPT, AFF,
we do not handle it in this step and consider as unknown to
limit misunderstandings when not sure. One difference is that
the acronym list can include characters such as "NQ/TW",
which makes the mapping process more accurate and sure-
footed. With dictionary mapping abbreviations, uppercase and

Figure 1. Common abbreviations in Vietnamese

lowercase tokens are often referred as two separate objects,
with different contexts and probabilities, an acronym can have
more than one meaning. Acronyms that appear less frequently
are filtered out to limit misunderstandings

2) Teen Code - Slang - Lingo: We updated this mapping
dictionary by adding more than 300 slangs like "H’Hen Nie,
Ea H’leo", added some Lingo that not appear in Popular
Dictionary, words that backend doesn’t support like “Đắk Lắk,
Pleiku”. It also handles inconsistency in writing of the same
word, such as "thuỷ - thủy" or "tuỳ - tùy". Loanwords like
"oxy, axit" and common misspellings are also updated.

3) Special Symbols: After browsing through the dictionar-
ies, if the token does not belong to any Mapping Dictionaries,
we continue to split the token into smaller substring separated
by symbols and special characters. The system shows the
corresponding reading for each symbols, non-stop punctuation
such as brackets, quotes will be removed. The system continue

checking each substring in the mapping dictionaries again, this
process, (Tokenize with space first, if the token is unknown,
then tokenize with special character) ensure normalization
avoids errors when the string is written adjacent to each other.
This way will handle both cases “GD-ĐT” and “ê-kíp”, hyphen
in the first case will be omitted to "GDĐT", the second case
will be replaced with space to "ê kíp", and many similar cases
with symbolic problems are also solved. If the token is still
not in any mapping dictionary, we treat it as unknown word,
if it is uppercase, spell each character as English letter, if it is
lowercase and containing vowels, we will leave the backend to
handle by letter to sound, if it is not contains the vowel, spell
each character as Vietnamese letter.

4) Punctuations: The final step is to standardize the output
text, including removing duplicate white spaces, handling
punctuations including removing no voice marks like “()[]",
and replace all punctuation marks with two punctuation sym-
bols, comma and dot, which represent as the sound unit.

IV. VIETNAMESE SYLLABLES STATISTICS

In order to update the Vietnamese syllables used today,
we proceeded to build a Text News Corpus with sources of
9 online newspapers, crawled from 7/2018. The Corpus is
divided at the sentence level, consisting of a total of 6,308,173
sentences, the number of non-standard sentences is 3,740,507
sentences, accounting for more than 59.29 %, the rest are
sentences that need not be processed, containing Vietnamese-
only vocabs.

dantri danviet nld thanhnien tto
653545 386444 103218 634974 177287
tuoitre vnexpress vnn zingnews
167162 157202 481566 979109

Table II
NUMBER OF SENTENCES FROM POPULAR VIETNAMESE NEWSPAPERS

We continue to word-tokenize every sentence, totaling 10.88
million tokens.The tokens will be classified into groups such
as Special Case, Time-date, Math and Number, English, Slang,
Teencode, Acronyms, Initialism, Proper Noun, etc.

Some notable points from the statistics on News Corpus
are: special cases only account for 0.2%, most of the Timedate
cases are the publication date of the news, English accounts for
40 percent, and most of the abbreviations are all in uppercase.

V. EXPERIMENT

A. Programming Language and Library

To select the language for the text normalization problem,
we considered choosing between C ++, Python and Perl. A
comparison of common programming languages used in bioin-
formatics, also requires performing different computing tasks
on the sequences, indicating that Python and Perl are often
called script languages and suitable for web scripting, parsing,
C and C ++ are fully compiled languages, suitable for system-
intensive tasks [24]. We decided to choose C ++ because it
is suitable for Cross-Platform Deployment, has a Fast running

Figure 2. Statistics on Tokens need to be standardized in Vietnamese

time, Use less memory than Perl and is compatible with the
current VOS backend. Some famous frameworks for text to
speech system also use C and C ++ such as Festival Speech
Synthesis System of University of Edinburgh, Flite of CMU,
Hts-engine use for Jtalk, Sinsy, and eSpeak is also written in
C and C ++.

One of problems when using C ++ is to handle Vietnamese
Unicode, we use ICU4C library version 64.2, an International
Components for Unicode. This library is opensource,Well-
documented, robust and reliable. The ICU provides basic
regular expression operators and especially Case Insensitive
Matching, which helps the regular expression to capture both
uppercase and lowercase letters, preserving the properties of
the input text, which will be beneficial for handling backend,
helping voice more natural, change the overall intonation like
stress on capitalized words.

We provide a python package on Ubuntu 18.04 that can be
installed at the Python Package Index called ViNorm.

B. Testing

From the data collected as mentioned above, we extracted
100 tricky need-normalized cases to use as the baseline for
improvement, 500 random cases in practical contexts for test
our proposal. These test cases do not include normal sentences,
foreign words and proper nouns. With the 100 case test suite,
we improved the frontend of VOS from 60% to 97%. With the
500 test cases, our method achieved 96%, but there are still
many cases that only temporarily accept, retain the sentence
meaning but lead to unnatural. Some cases are wrong when
mapping acronyms due to its plurality, such as BTC, we can
read as "Ban tổ chức", "Bộ tài chính", or it can also be a stock
symbol.

VI. CONCLUSION

A. Performance of VOS

VOS system has natural and fluent voice. However, when
dealing with informal document, VOS has few minor errors

https://pypi.org/project/vinorm/
https://drive.google.com/file/d/1RxmjdZUAAiJMyTuLwi38NhxaWpYlUvDp/view?usp=sharing
https://drive.google.com/file/d/1x1Uhu8oNaCj-Ql8SXoNt3td8VysWG__q/view?usp=sharing

result in unnatural results. This could be explained by the
rapid change in the informal language, especially ones used
in Internet. In this report, we improve the numeric processing
modules, the processing special character module to produce
the result to match the context of document. Larger dictionaries
are used to cover more words and implementing module
to recognize words which have different pronunciation in
uppercase and lowercase. Updates to the regular expression
step and the expansion of mapping dictionaries have helped
VOS solve many special cases, especially for tokens that
contain both numbers and letters.

B. Future Improvements

There are still many issues that text normalization needs to
improve, as the statistics mentioned above show that English
and the Proper Nouns make up nearly 40% of the tokens
to handle. To handle multilingual words, there are several
approaches such as using the International Phonetic Alphabet
to transcribe Vietnamese [25], or improving the backend to
handle out-of-domain and complex words like neural network
models [26].

The current improvements are mainly based on the regular
expression and mapping by checking lexicon, there are still
some unintended matches. One of the painful things when
working with Text Normalization is handling ambiguous cases.
To reduce ambiguity, we need to rely on the context of the
word to be standardized, but this takes a lot of effort because
with an ambiguous word, we need to label different meanings
for that word in each specific case, then we can put it into
the statistical model for training. Currently RNN-like models
for text normalization, a mix of rule-based and model-based
system is state-of-the-art and gradually applied to each specific
language [27] [28] [29].

There are also many issues that need to be solved when
the unofficial input text such as misspellings, no accents,
containing sticky phrases such as thegioididong, dienmayxanh,
etc.

REFERENCES

[1] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and
C. Richards. (2001) Normalization of non-standard words.

[2] M. Chu, H. Peng, and Y. Zhao. (2009, Feb. 24) Front-end architecture
for a multi-lingual text-to-speech system. US Patent 7,496,498.

[3] D. Yarowsky. (1993) Text normalization and ambiguity resolution in
speech synthesis.

[4] V. Q. D. Ha, N. M. Tuan, C. X. Nam, P. M. Nhut, and V. H. Quan.
(2010) Vos: the corpus-based etnamese text-to-speech system.

[5] Vocalware. Vocalware’s text-to-speech. [Online]. Available: https:
//www.vocalware.com/index/demo

[6] N. Communications. Nuance’s text-to-speech. [Online]. Available:
https://www.nuance.com

[7] N. Ltd. Natural ’s text-to-speech. [Online]. Available: https://www.
naturalreaders.com/online/

[8] Microsoft. Online microsoft sam tts generator. [Online]. Available:
https://tetyys.com/SAPI4/

[9] IBM. Waston text to speech. [Online]. Available: https:
//text-to-speech-demo.ng.bluemix.net

[10] iSpeech. Demo. [Online]. Available: https://www.ispeech.org
[11] A. W. Services. Amazon polly. [Online]. Available: https://aws.amazon.

com/polly/
[12] Google. Demo. [Online]. Available: https://cloud.google.com/

text-to-speech

[13] Responsivevoice. Responsivevoice’s text-to-speech. [Online]. Available:
https://responsivevoice.org/

[14] VBee. Vbee ’s text-to-speech. [Online]. Available: https://vbee.vn/
[15] F. CORPORATION. Fpt.ai speech. [Online]. Available: https://fpt.ai/tts/
[16] T. Van Nguyen, B. Q. Nguyen, K. H. Phan, and H. Van Do. (2018)

Development of vietnamese speech synthesis system using deep neural
networks.

[17] F. S. Foundation. Vietnamese human-based text-to-speech. [Online].
Available: http://espeak.sourceforge.net/

[18] F. T. Company. Fibo text-to-speech. [Online]. Available: https:
//fibo.vn/voice/demo/

[19] L. T. Anh. Vnspeak tts. [Online]. Available: http://www.vnspeak.com/
vnspeak-tts/

[20] S. Ritchie, R. Sproat, K. Gorman, D. van Esch, C. Schallhart, N. Bam-
pounis, B. Brard, J. F. Mortensen, M. Holt, and E. Mahon. (2019) Uni-
fied verbalization for speech recognition & synthesis across languages.

[21] P. Taylor. (2009) Text to speech synthesis.
[22] R. C. Streijl, S. Winkler, and D. S. Hands. (2016) Mean opinion score

(mos) revisited: methods and applications, limitations and alternatives.
[23] R. Sproat. (2010) Lightly supervised learning of text normalization:

Russian number names.
[24] M. Fourment and M. R. Gillings. (2008) A comparison of common

programming languages used in bioinformatics.
[25] T. T. L. Ly, B. T. Sơn, N. K. Duy et al. (2019) MỘt giẢi pháp viỆt hóa

cách phát âm các tỪ vỰng tiẾng anh trong văn bẢn tiẾng viỆt.
[26] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,

Y. Zhang, Y. Wang, R. Skerrv-Ryan et al. (2018) Natural tts synthesis
by conditioning wavenet on mel spectrogram predictions. IEEE.

[27] B. Roark, F. Stahlberg, H. Zhang, K. Wu, K. Gorman, R. Sproat,
and X. Peng. (2019) Neural models of text normalization for speech
applications.

[28] R. Sproat and N. Jaitly. (2016) Rnn approaches to text normalization:
A challenge.

[29] S. Yolchuyeva, G. Németh, and B. Gyires-Tóth. (2018) Text normaliza-
tion with convolutional neural networks.

https://www.vocalware.com/index/demo
https://www.vocalware.com/index/demo
https://www.nuance.com
https://www.naturalreaders.com/online/
https://www.naturalreaders.com/online/
https://tetyys.com/SAPI4/
https://text-to-speech- demo.ng.bluemix.net
https://text-to-speech- demo.ng.bluemix.net
https://www.ispeech.org
https://aws.amazon.com/polly/
https://aws.amazon.com/polly/
https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech
https://responsivevoice.org/
https://vbee.vn/
https://fpt.ai/tts/
http://espeak.sourceforge.net/
https://fibo.vn/voice/demo/
https://fibo.vn/voice/demo/
http://www.vnspeak.com/vnspeak-tts/
http://www.vnspeak.com/vnspeak-tts/

	Introduction
	Voice of Southern and other TTS systems in Vietnam
	Voice of Southern System
	Other TTS systems

	Survey of Vietnamese Speech Synthesis
	Test cases
	Criteria
	Results
	Overall Results
	Detail Results
	Comparison

	Proposed Methods
	Rules with Regular Expression
	Special cases
	Time-date
	Mathematical
	Address-Code

	Dictionary Checking
	Abbreviations
	Teen Code - Slang - Lingo
	Special Symbols
	Punctuations

	Vietnamese Syllables Statistics
	Experiment
	Programming Language and Library
	Testing

	Conclusion
	Performance of VOS
	Future Improvements

	References

