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I. Introduction

By definition, CUDA is architecture and programming model developed by NVIDIA to run

parallel computing on graphics processing units (GPUs)

CUDA is the acronym for Compute Unified Device Architecture

CUDA components include:

● Programming language based on C++

○ CUDA language is based on C++ with a few additional keywords and

concepts, which makes it fairly easy for non-GPU programmers to pick

up. It lacks the use of object oriented or C++ features in device code.

○ Third party wrappers are also available for Python, Perl, Fortran, Java,

Ruby, Lua, Common Lisp, Haskell, R, MATLAB, IDL, Julia, and native

support in Mathematica.”

● Software development kit

○ includes libraries, debugging and optimization tools, a compiler,

documentation, and a runtime library to deploy your applications.)

● Massively parallel hardware designed

This report will focus on Programming language part and some hardware design

History

In 1989, the system architecture and the programming environment of the Pixel Machine - a

parallel image computer with a distributed frame buffer was first introduced

GPU was first invented by NVidia in 1999. Nvidia started trying to compete in the 3D

accelerator market with weak products in 1996, but learned as it went, and in 1999

introduced the successful GeForce 256, the first graphics card to be called a GPU. At the



time, the principal reason for having a GPU was for gaming. It wasn’t until later that people

used GPUs for math, science, and engineering.

In 2003, a team of researchers led by Ian Buck unveiled Brook, the first widely adopted

programming model to extend C with data-parallel constructs. Buck later joined Nvidia and

led the launch of CUDA in 2006, the first commercial solution for general-purpose computing

on GPUs.

In 2009 OpenCL was launched by Apple and the Khronos Group, in an attempt to provide a

standard for heterogeneous computing that was not limited to Intel/AMD CPUs with Nvidia

GPUs. CUDA is still prefered for parallel

programming despite only being possible to run

the code in a NVidia's graphics card. On the

other hand, many programmers prefer to use

OpenCL because it may be considered as a

heterogeneous system and be used with GPUs

or CPUs multicore

Popularity

By the rankings of the top programming

languages of IEEE in 2016, CUDA is in the 21st



place. These rankings are based upon the trends that were noticed and take into account

several metrics. The data used for ranking is from Google search, Github, Stack Overflow,

Reddit and etc. CUDA is used in Enterprise, mainly for calculation and research, rarely used

in web and application programming because it is difficult to access and depends on

hardware. At start, they were used for graphics purposes only. But now GPUs are becoming

more and more popular for a variety of general-purpose, non-graphical applications too. For

example they are used in the fields of computational chemistry, sparse matrix solvers,

physics models, sorting, and searching

Benefits and Limitations

We use CUDA when we have lots of data, and lots of computations

The benefits of CUDA is:

● Harnesses the power of the GPU by using parallel processing;

● Running thousands of simultaneous reads instead of single, dual, or quad reads on

the CPU.

● C/C++ is widely used, easy to learn how to program for CUDA.

● Most graphics cards of NVIDIA support CUDA.

● Huge increase in processing power over conventional CPU processing. Early reports

suggest speed increases of 5x to 200x over CPU processing speed.

As we can find from the figure above, performance when using GPU for computer vision

methods is faster than using CPU.



The limitations of CUDA over traditional general purpose computation on GPUs is:

● Latency between the CPU and GPU

Copying between host and device memory may incur a performance hit due to system

bus bandwidth

● A single process must run spread across multiple memory spaces

Threads should be running in groups of at least 32 for best performance

● CUDA-enabled GPUs are only available from NVIDIA (Unlike OpenCL)

II. System Structure

NVIDIA’s graphics processing units (GPUs) are very powerful and highly parallel. GPUs have

hundreds of processor cores and thousands of threads running concurrently on these cores,

thus because of intensive computing

power they are much faster than the

CPU

Heterogeneous

Heterogeneous architecture is used to

make an interaction between CPU and

GPU programming models. Data may

be copied from host memory to device

memory and the results are copied

back to host from the device memory.

Parallel execution is expressed by the



kernel function that is executed on a set of threads in parallel on GPU; GPU is also called

device. This kernel code is a C code for only one thread. The numbers of thread blocks, and

the number of threads within those blocks execute this kernel in parallel.

Paradigm

Since CUDA is extended from C++, it supports multiple-paradigms: imperative,

object-oriented, functional and especially parallel paradigm.

Parallel programming is its strongest point, since it not only runs multiple tasks at the same

time but also can get the combination of serial and parallel executions.

Programming Model

CUDA kernel is specific functions in CUDA,

a kernel can be a function or a full program

invoked by the CPU. It is executed N

number of times in parallel on GPU by

using N number of threads

Some properties of model:

● In each block of a grid, there are up

to 512, 1024 or 2048 threads

● All blocks will define a grid and

execute the same program (kernel)

and they are independent

● Only one kernel can run at a time



The Grid consists of one-dimensional, two-dimensional or three-dimensional thread blocks.

Each thread block is further divided into one-dimensional or two-dimensional threads. A

thread block is a set of threads running on one processor

Thread

NVIDIA's graphics card is a new technology that is

extremely multithreaded computing architecture. It

consists of a set of parallel multiprocessors, that are

further divided into many cores and each core executes

instructions from one thread at a time

All threads of a single thread block can communicate

with each other through shared memory; therefore they

are executed on the same multiprocessor. In this way it becomes possible to synchronize

these threads.

For synchronization purposes among threads CUDA API provides a hardware thread-barrier

function syncthreads() that acts as synchronization point. As threads are scheduled in

hardware, this function is implemented in hardware. The threads will wait at the

synchronization point until all of the threads have reached this point. The communication

among threads (if required) is possible through per-block shared memory. Hence thread

synchronization is possible only at thread block level. Since threads of a thread block may

communicate with each other, these threads must execute on the same processor.

Processing Flow



As the kernel function runs on the device, memory

must be allocated on device in advance before

kernel function invocation and if the kernel function

has to execute on some data then the data must be

copied from the host memory to the device memory.

First of all, when a CUDA program is executed, with

the code for running in GPU, data is copied from

main memory to GPU memory.

Then CPU will instructs the process to GPU for

execution

GPU execute parallel tasks in each core

After running all tasks in GPU, the system copy result from GPU memory to Main memory

Processing Flow in Programming

Since the bandwidth between the device memory and the host memory is much less as

compared to the bandwidth between the device and the device memory which is very high,

we should try to minimize data transfer between the host and the device. Some of the efforts

could be like moving some code from the host to the device and creating and destroying data

structures in the device memory (instead of copying them to the device)



Compiler

Because CUDA programs include code running in CPU

and GPU, therefore, for each partition of code we compile

each of them. GCC/G++ Compiler for Host code, NVCC

Compiler for device code and GCC/G++ for linking both of

them to create the execution file.

III. Syntax and Semantic
1. Identifier

RULES FOR NAMING IDENTIFIER

● Case sensitive

● Cannot start with a digit

● Underscore can be used as first character

● Other special characters are not allowed

● Cannot use keywords as identifiers.

For example:

- Legal identifier: a, bcd, _this, w1c, nm_2, _, …

- Illegal identifier: 1cvb, @qwe, ab@, ...

2. Specification

a. Function qualifier



Some function qualifiers:

● __global__ :

The functions with global qualifier are executed on the device but they are

callable from the host only.

● __device__ :

The functions with device qualifier are executed on the device. These functions

are callable from the device only.

● __host__ :

The functions with host qualifier are executed on the host and are callable from

the host only. When no qualifier is used, it means that the function will run on

the host; it is equivalent to the function declared with the _host_ qualifier.

b. Function call



In the kernel function call grid and block variables are written in three angular brackets

<<< grid, block >>>

Syntax for calling function:

kernel_function<<<M,N>>>(list of arguments);

M is number of block

N is number of threads each block (size of block)

M*N is number of times that function is executed.

c. Device variable

The CUDA paradigm provides some built-in variables to use this structure efficiently.

Some device variables:

● dim3 gridDim: Dimensions of the grid in blocks

● dim3 blockDim: Dimensions of the block in threads

● dim3 blockIdx: Block index within the grid

● dim3 threadIdx: Thread index within the block



The thread index i is calculated by the following formula :

i = blockDim.x * blockIdx.x + threadIdx.x

The allocation of the number of thread blocks to each multiprocessor is dependent on the

necessity of the shared memory and registers by each thread block. More memory and

registers requirement by each thread block means allocation of less thread blocks to each

multiprocessor.

d. Variable qualifiers

Here are some variable qualifiers:

● __constant__ :

This qualifier is used to allocate constants on the device. It is optionally used together

with __device__ qualifier. This constant resides in constant memory, and has the



lifetime of an application. It is accessible from all the threads (within grid) and host

through the runtime library.

● __shared__ :

This qualifier is used to allocate the shared variable. It is optionally used together with

__device__ qualifier. Shared variable resides in shared memory of a thread block, and

has the lifetime of a block. It is only accessible from all the threads within the block.

● __device__ : accessible by all threads.

The variables declared with __device__ reside on the device. Other type qualifiers are

optionally used together with __device__. If a variable is declared only with

__device__ qualifier then this variable resides in the global memory and it has the

lifetime of the application. Since it resides in the global memory, it is accessible from

all the threads (within the grid) and host through the runtime library.

IV. Experiment
In our GPU using for experiment, maximum number of block is 65535 and maximum number

of threads each block = 1024

(Compute Capability: 3.5)

Problem 1

Adding two vectors a and b, resulted in vector c

We will do this by adding each element at each

index position together and separately.

1. Without parallelism

- ss



Using only one block with one thread.

Using a loop to do addition on each index.

2. With parallelism

Using only 1000 blocks, each block has 1000

threads.Each thread we do addition on one index.

3. Result

No parallelism Parallelism

GPU one thread GPU parallel CPU

Runtime 266.64ms 51.537 us 0.0072s



From the table above, we can find that when running GPU with only one thread, it takes more

time than running in CPU because of its powerful computing. But when running GPU CUDA

with parallel core, multi-thread, GPU performs faster than CPU.

Problem 2

To see the parallel processing power of CUDA, let's try Solving 1000 quadratic equations

We was going to set the parameter A,B,C of quadratic equation in random, then execute the

program writing in CUDA C++ , the result is 0.65ms

We will solve each quadratic equation in equation function, which can be called from other

GPU code by using function qualifier __device__.



In add function, we will calculate the thread index of the current thread and then solve the

quadratic equation by passing the corresponding parameters to equation.

Finally, in the main function, we will allocate memory in the device, initialize random

parameters for each equation and call the function add using 100 blocks, each block has 100

threads, with a total of 10000 parallel threads, which is equal to the SIZE - number of

quadratic equations.

V. More about CUDA



Opponent

There have been other proposed APIs for GPUs, such as OpenCL, and there are competitive

GPUs from other companies, such as AMD, the combination of CUDA and Nvidia GPUs

dominates several application areas, including deep learning, and is a foundation for some of

the fastest computers in the world.

CUDA in deep learning

Deep learning has an outsized need for computing speed. For example, to train the models

for Google Translate in 2016, the Google Brain and Google Translate teams did hundreds of

one-week TensorFlow runs using GPUs; they had bought 2,000 server-grade GPUs from

Nvidia for the purpose. Without GPUs, those training runs would have taken months rather

than a week to converge. For production deployment of those TensorFlow translation models,

Google used a new custom processing chip, the TPU (tensor processing unit).

In addition to TensorFlow, many other DL frameworks rely on CUDA for their GPU support,

including Caffe2, CNTK, Databricks, H2O.ai, Keras, MXNet, PyTorch, Theano, and Torch. In

most cases they use the cuDNN library for the deep neural network computations. That

library is so important to the training of the deep learning frameworks that all of the

frameworks using a given version of cuDNN have essentially the same performance

numbers for equivalent use cases.
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