
CUDA Programming

Outline

What is CUDA?

When to use CUDA?

Principles of CUDA

How CUDA works?

3

What is Cuda
?

What is Cuda
?

CUDA = Cuda Architecture + Cuda Programing Model

Developed by NVIDIA

Parallel computing on graphics processing units (GPUs)

4

5

CUDA

Programming language
based on C++

Software development kit

Massively parallel
hardware designed

“ CUDA language is based on C++ with a
few additional keywords and concepts,
which makes it fairly easy for non-GPU
programmers to pick up

6

7

History of CUDA

1989

1999

2007

2009

Pixel Machine

GPU was invented

purely fixed-function devices
GeForce 256

CUDA
Compute Unified Device
Architecture
By NVIDIA

OpenCL

CUDA competitor
Apple and the Khronos Group
Not limited to Intel/AMD
CPUs with Nvidia GPUs

Compute Unified Device
Architecture

8

Popularit
y

The Top Programming

Languages 2016

9

When to use Cuda
?

When to use Cuda ?

10

⬡ Lots of data ⬡ Lots of computations

Benefits of Cuda
?
⬡ Harnesses the power of

the GPU by using parallel
processing;

⬡ Running thousands of
simultaneous reads
instead of single, dual, or
quad reads on the CPU.

11

Benefits of Cuda
?

⬡ C/C++ is widely used, easy to learn how to
program for CUDA.

⬡ Most of graphics cards of NVIDIA support CUDA.

12

5x to 200x
Huge increase in processing power over conventional CPU processing. Early
reports suggest speed increases of 5x to 200x over CPU processing speed.

13

14

Limitations of CUDA
Over traditional general purpose computation on GPUs

⬡ Latency between the CPU and GPU

Copying between host and device memory may incur a performance hit due to system bus bandwidth

⬡ A single process must run spread across multiple memory spaces

Threads should be running in groups of at least 32 for best performance

⬡ CUDA-enabled GPUs are only available from NVIDIA

Unlike OpenCL

https://en.wikipedia.org/wiki/OpenCL

15

Principles of CUDA

Parallel structure

16

17

Paradigm

⬡ Parallel programming

⬡ Combination of serial and

parallel executions

Heterogeneous Architecture

18

Programming
Model

⬡ Device = GPU

⬡ Host = CPU

⬡ Kernel = Functions run on Device

More about CUDA kernel

specific functions in CUDA, A kernel can be a function or a

full program invoked by the CPU. It is executed N number of

times in parallel on GPU by using N number of threads

19

Programming
Model

⬡ 512, 1024 or 2048 threads in one block

⬡ All blocks define a grid

⬡ All block execute same program (kernel)

⬡ Blocks are independent

⬡ Only one kernel at a time

20

Programming
Model

In our GPU using for experiment

Max of block = 65535
Max of threads each block = 1024 (Compute Capability: 3.5)

21

CUDA Thread

❖ Thread Cooperation
➢ Share memory > powerful feature of CUDA

➢ All threads run same code

❖ CUDA threads vs CPU threads
➢ CUDA thread is lightweight

➢ CUDA use 1000s threads, CPU single, dual, or

quad

22

Processing Flow

1. Copy data from Main mem to GPU mem

2. CPU instructs the process to GPU

3. GPU execute parallel in each core

4. Copy result GPU mem to Main mem

23

Processing Flow

⬡ Copy data from Main

memory to GPU mem

⬡ GPU execute parallel

⬡ Copy result GPU mem

to Main mem

��
��
��

24

CUDA compiler

⬡ GCC/G++ Compiler for Host code

⬡ NVCC Compiler for device code

⬡ GCC/G++ for linking

Syntax

25

26

Identifie
r

RULES FOR NAMING IDENTIFIER

● Case sensitive
● Cannot start with a digit
● Underscore can be used as first character
● Other special characters are not allowed
● Cannot use keywords as identifier.

Followsym: [a-zA-Z0-9_$]
Identifier: [a-zA-Z]{followsym}* | {_{followsym}}+

27

Specification

Variable Qualifiers

CUDA Built-in device variable

Function Qualifiers

Function Call

28

Function Qualifiers Example

“ CUDA language is based on C++ with a
few additional keywords and concepts,
which makes it fairly easy for non-GPU
programmers to pick up

29

30

Function Qualifiers

invoked from within CPU code

⬡ __global__ : can not be called from GPU code
must return void

⬡ __device__ : called from other GPU functions
can not be called from CPU code

⬡ __host__ : can only be executed by CPU
Called from host

31

Function Call Example

32

kernel_function<<<M,N>>>(list of arguments);

M is number of block
 N is number of threads each block (size of block)
 M*N is number of times that function is executed.

Function Call

33

ExampleCUDA Built-in device variable

34

CUDA Built-in device variable

★ dim3 gridDim : Dimensions of the grid in blocks

★ dim3 blockDim : Dimensions of the block in threads

★ dim3 blockIdx : Block index within the grid

★ dim3 threadIdx : Thread index within the block

The thread index i is calculated by the following formula :🔑

35

index = blockIdx.x * blockDim.x + threadIdx.x = 1 * 256 + 0 = 256

36

ExampleVariable Qualifiers

37

Variable Qualifiers

⬡ __shared__ : accessible by all threads in the same block.
⬡ __device__ : accessible by all threads.

38

How to use?

39

 Adding two vector a and b
Example: resulted in vector c

 with a, b and c have the same size.

a b c

40

No Parallel

- Using only one block with
one thread.

- Using a loop to do
addition on each index.

41

No Parallel

42

With Parallel

- Using only
THREAD_SIZE block,
each block has
SIZE/THREAD_SIZE + 1
threads.

- Each thread we do
addition on one index.

43

With Parallel

44

No Parallel With Parallel

45

No Parallel With Parallel

Experiment: runtime: 126x

Plus Quadratic

GPU one thread 0.266s

GPU Parallel 0.000057s

CPU 0.0072s

46

47

Thanks
!
Nguyễn Minh Trí

Đỗ Trí Nhân

ReferencesRef
An Introduction to CUDA Programming
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://stackoverflow.com/questions/5211746/what-is-cuda-like-what-is-it-for-what-are-the-benefits-and-how-to-start
https://www.tutorialspoint.com/cuda/cuda_key_concepts.htm
https://www.tutorialspoint.com/cuda/cuda_keywords_and_thread_organization.htm
https://developer.nvidia.com/cuda-faq
https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html
https://www.sciencedirect.com/science/article/pii/S0167819119301759
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016#index/2016/1/1/1/1/1/50/1/50/1/50/1/30/1/30/1/3
0/1/20/1/20/1/5/1/5/1/20/1/100/
https://medium.com/@inaccel/cpu-gpu-fpga-or-tpu-which-one-to-choose-for-my-machine-learning-training-948902f058e0
http://www.diva-portal.org/smash/get/diva2:447977/FULLTEXT01.pdf
http://proceeding.vap.ac.vn/index.php/proceedingvap/article/view/000214/203
https://www.slideserve.com/ryu/cuda-programming
https://www.myzhar.com/blog/tutorials/tutorial-nvidia-gpu-cuda-compute-capability/
https://books.google.com.vn/books?id=CYxjDwAAQBAJ&pg=PA7&lpg=PA7&dq=pytorch+is+wrapper+of+cuda&source=bl&ots=4
3Smx_h6jw&sig=ACfU3U20lxlu8I4kSDSTS5RGQEFk6QMnuQ&hl=en&sa=X&ved=2ahUKEwiz_tLSqa7pAhXOzIsBHU55DCMQ6
AEwD3oECBIQAQ#v=onepage&q=pytorch%20is%20wrapper%20of%20cuda&f=false
http://www.c4learn.com/cplusplus/cpp-variable-naming/
https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html
https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-programming-environment/
Main
https://www.yumpu.com/en/document/read/50976433/cuda-parallel-programming-tutorial
http://www.diva-portal.org/smash/get/diva2:447977/FULLTEXT01.pdf
https://www.slideserve.com/ryu/cuda-programming
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf

https://www.youtube.com/watch?v=kIyCq6awClM
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://stackoverflow.com/questions/5211746/what-is-cuda-like-what-is-it-for-what-are-the-benefits-and-how-to-start
https://www.tutorialspoint.com/cuda/cuda_key_concepts.htm
https://www.tutorialspoint.com/cuda/cuda_keywords_and_thread_organization.htm
https://developer.nvidia.com/cuda-faq
https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html
https://www.sciencedirect.com/science/article/pii/S0167819119301759
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016#index/2016/1/1/1/1/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/1/5/1/20/1/100/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016#index/2016/1/1/1/1/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/1/5/1/20/1/100/
https://medium.com/@inaccel/cpu-gpu-fpga-or-tpu-which-one-to-choose-for-my-machine-learning-training-948902f058e0
http://www.diva-portal.org/smash/get/diva2:447977/FULLTEXT01.pdf
http://proceeding.vap.ac.vn/index.php/proceedingvap/article/view/000214/203
https://www.slideserve.com/ryu/cuda-programming
https://www.myzhar.com/blog/tutorials/tutorial-nvidia-gpu-cuda-compute-capability/
https://books.google.com.vn/books?id=CYxjDwAAQBAJ&pg=PA7&lpg=PA7&dq=pytorch+is+wrapper+of+cuda&source=bl&ots=43Smx_h6jw&sig=ACfU3U20lxlu8I4kSDSTS5RGQEFk6QMnuQ&hl=en&sa=X&ved=2ahUKEwiz_tLSqa7pAhXOzIsBHU55DCMQ6AEwD3oECBIQAQ#v=onepage&q=pytorch%20is%20wrapper%20of%20cuda&f=false
https://books.google.com.vn/books?id=CYxjDwAAQBAJ&pg=PA7&lpg=PA7&dq=pytorch+is+wrapper+of+cuda&source=bl&ots=43Smx_h6jw&sig=ACfU3U20lxlu8I4kSDSTS5RGQEFk6QMnuQ&hl=en&sa=X&ved=2ahUKEwiz_tLSqa7pAhXOzIsBHU55DCMQ6AEwD3oECBIQAQ#v=onepage&q=pytorch%20is%20wrapper%20of%20cuda&f=false
https://books.google.com.vn/books?id=CYxjDwAAQBAJ&pg=PA7&lpg=PA7&dq=pytorch+is+wrapper+of+cuda&source=bl&ots=43Smx_h6jw&sig=ACfU3U20lxlu8I4kSDSTS5RGQEFk6QMnuQ&hl=en&sa=X&ved=2ahUKEwiz_tLSqa7pAhXOzIsBHU55DCMQ6AEwD3oECBIQAQ#v=onepage&q=pytorch%20is%20wrapper%20of%20cuda&f=false
http://www.c4learn.com/cplusplus/cpp-variable-naming/
https://www.infoworld.com/article/3299703/what-is-cuda-parallel-programming-for-gpus.html
https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-programming-environment/
https://www.yumpu.com/en/document/read/50976433/cuda-parallel-programming-tutorial
http://www.diva-portal.org/smash/get/diva2:447977/FULLTEXT01.pdf
https://www.slideserve.com/ryu/cuda-programming
https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf

49

50

Solving 1000 quadratic equations

51

Future an
Advance of
Parallel
Programming

52

CUDA compiler - Future (option CPU or
GPU)

53

54

55

56

57

Place your screenshot here

Sample Code

58

https://www.sciencedirect.com/science/article/pii/S0167819119301759

https://www.sciencedirect.com/science/article/pii/S0167819119301759

59

