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Non-autoregressive text to speech models such as Fastspeech2 can fast synthesize

high-quality speech. This model also allows explicit control of the speech signal’s pitch,
energy, and speed. However, controlling emotion while maintaining natural human-like

speech is still a problem. In this work, we propose an expressive speech synthesis model

that can synthesize high-quality speech with desired emotion. The proposed model in-
cludes two main components (1) Mel Emotion Encoder extracts emotion embedding

from the Mel-spectrogram of audio, (2) the FastSpeechStyle, a non-autoregressive model,

which is modified from vanilla Fastspeech2. The FastSpeechStyle used an Improved
Conformer block, which replaces normal LayerNorm with Style Adaptive LayerNorm to

”shift” and ”scale” hidden features according to emotion embedding, instead of vanilla
FFTBlock1 to better model the local and global dependency in the acoustic model. We

also propose a specific inference strategy to control the desired emotion of speech. The

experimental results show that the proposed model with improved Conformer achieved
higher scores than the baseline model in all naturalness and emotion similarity scores.

Keywords: text-to-speech, emotional speech synthesis, cross-speaker adaptation, style

adaptive layer.

1. Introduction

With the advance of deep learning models, speech synthesis systems have created

synthetic speech indistinguishable from the human speech in terms of naturalness.

Besides linguistic information, the speech also conveys information about speaking

styles, such as speaker identity, emotion, and prosody. These types of information

play a crucial role in effective verbal communication with a human or can be ap-

plied in critical situations2 and storytelling3. However, controlling this expressive

information in synthetic speech remains challenging for the current Text to Speech

(TTS) systems.

The construction of an expressive speech synthesis model has been studied for

a long time, from a synthesizing emotional speech by the Unit Selection method to

HMM-Based methods by using the average emotion model4 or model interpolation5,

and prominent in recent years is End to End models using deep neural networks6.

The most common approach to emotional speech synthesis (ESS) using deep

neural networks is to condition a TTS model with expressive features. In super-

vised learning, the emotion feature can be simply represented as a one-hot encoded

vector7 from small number of basic categories based on discrete emotion theory8.
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Prosody features such as pitch, energy, and duration can be estimated from text and

speech data before training the model to improve the controllability of emotional

speech. However, due to the discrete values of the one-hot encoded vector, such ap-

proaches can only synthesize predefined emotions and depend on the homogeneity

of emotions in the data samples. Therefore, the limitation of this method is emo-

tion ambiguity and cannot show properties such as degree of continuous emotion,

multi-label emotion, and emotion context dependency9.

In an unsupervised manner that does not require emotion-labeled data, expres-

sive information can be implicitly extracted by a reference encoder or by using a

variational autoencoder10. Although this method can not interpret the emotion of

speech, the prosody can be continuously controlled for each speaker and the model

can acquire the ability to model a wide range of acoustic expressiveness11. Varia-

tional autoencoder (VAE) models try to model emotions in continuous latent space

with Gaussian prior and manipulate these latent variables for emotional synthesis12.

However, the drawback of such an approach is computation speed. Expressive infor-

mation is conveyed in both text and speech: text representations can be obtained

from pre-training1314 to capture the contextual information of the sentence1516,

and emotional speech embedding can be extracted from the reference speech using

a reference encoder. This model can well generate expressive speech using unseen

tags. However speech quality of the style tag model is still lower than the reference

model.

With the ability to explicitly control pitch, energy, and duration, Fastspeech217

architecture is perfectly tailored to the Text to Speech applications. Furthermore,

the non-autoregressive property of Fastspeech2 proves more reliable and robust than

other autoregressive models that often suffer from fail-alignment problems. For that

reason, the proposed FastSpeechStyle used Fastspeech2 as the backbone model, the

LayerNorm18 layers were replaced by Style Adaptive Layer Norm (SALN)1920 to

condition the output Mel-spectrogram by emotion embedding, and the FFTBlock17

was replaced by Conformer Block to better model the local and global dependency

in the acoustic model21. A Mel Emotion Encoder19 was also used to generate emo-

tion embedding from Mel-ground truth. The proposed FastSpeechStyle model can

synthesize high-quality speech with a set of emotion tags by using a specific infer-

ence strategy.

Our main contributions are as follows:

• We propose a FastSpeechStyle model which uses Conformer Block instead

of FFTBlock to better model the local and global dependencies. We also

replace the LayerNorm with Style Adaptive Layer Norm to condition the

output Mel-Spectrogram by the emotion embedding vector.

• The specific inference strategy of the FastSpeechStyle model was proposed

to control the emotion of synthesized speech.

• Our proposed model achieved higher scores than the baseline model in all

naturalness and emotion similarity evaluations.
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The paper is organized as follows: We present an overview of emotional speech

synthesis and related works in Section 1 before describing our proposed TTS system

in Section 2. Then we show the experiment settings and evaluation results in Section

3. Finally, we conclude our paper in Section 4.

2. Emotional Speech Synthesis System

The Emotional Speech Synthesis System architecture is presented in Figure 1. This

model consists of three main components: A Mel Emotional Encoder to extract in-

formation about prosody into an embedding vector, an Acoustic Model to generate

Mel-spectrogram from input phonemes, and a Vocoder model to synthesize speech

from Mel-spectrogram.

Fig. 1. FastSpeechStyle: Emotional Speech Synthesis Architecture.
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2.1. Mel Emotional Encoder

The Mel Emotional Encoder (Emotion Encoder) is based on the idea of the Refer-

ence Encoder6 to extract an emotion embedding vector that contains the speech’s

emotional information. The architecture is the same as19, which comprises three

stacked modules. The first module is spectral processing with fully-connected layers

to create hidden features. The temporal processing module is convolutional layers

with residual connections to learn the context information of the speech segments.

Finally, the multi-head self-attention mechanism with residual connection is used

to encode global information. The output of self-attention was temporally averaged

to get an one-dimensional emotion vector. At the training stage, the input of the

Emotion Encoder is the ground truth Mel-spectrograms of the corresponding text

script.

2.2. FastSpeechStyle

For faster generation and high stability, Fastspeech2 was chosen as the backbone

model17. This non-autoregressive acoustic model consists of an Encoder to extract

the contextual information from the phoneme and a Variance Adaptor with explicit

variation information modeling, including duration, pitch, and energy predictor,

which adjusts the speed, tones, and loudness of the voice in phoneme-level22. Finally,

the Decoder to create Mel-spectrogram keeps the speaker’s timbre consistent. The

FFT block in Fastspeech2 was replaced by improved Conformer modules, which

were conditioned by emotional embedding through the Style Adaptive LayerNorm,

illustrated in Figure 2.

2.2.1. Conformer

Conformer is a combination of transformer and convolution modules. The Con-

former for speech synthesis is slightly different from what is used for speech recog-

nition models21. The order of self-attention depthwise convolution is switched to

faster convergency, the convolution layer was used to replace the linear layer in Feed

Forward Module, and ReLU was replaced by Mish23. Finally, the improved Con-

former is composed of four stacked modules: A convolutional feed-forward module,

a depthwise convolution module, a self-attention module, and a second convolu-

tional feed-forward module. With this architecture, the model can better model the

global interaction with self-attention and the local correlations with the convolution

layer in both the depthwise convolution module and the convolution feed-forward

module.

2.2.2. Style Adaptive Layer Norm

There are many ways to integrate emotional embedding into the Encoder and De-

coder of the backbone model, such as concatenation or element-wise addition with
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Fig. 2. The improved Conformer block and the integration of emotional embedding through

Adaptive Layer Norm

layers of Conformer. These methods increase the number of parameters of the model

and achieve low adaptation quality.

The main idea of the Style Adaptive Layer Norm (SALN19) is to ”scale and shift”

hidden features based on bias and gain conditioned by an emotional vector19. By

adjusting the bias and gain values, the model can generate various speech styles,

including emotions, and effectively synthesizing speech in the style/emotion of the

target speaker with only one reference sample.

SALN(h,w) = g(w)y + b(w) (1)

The affine layers, a single fully connected layer, convert the emotion embedding

w to bias b and gain g, respectively, for each hidden feature y in the formula 1.

The LayerNorm in the Conformer blocks will be replaced with the SALN layer to

change the style of the synthesized speech.



May 9, 2023 17:27 output

6 Thinh et al.

2.2.3. Loss Function

The loss function for the proposed acoustic model includes the popular fastspeech2

loss functions combined with a Structural Similarity Index Measure loss (SSIM)24.

Lvariation = Lpitch + Lduration + Lenergy (2)

Ltotal = Lvariation + Lmel + Lssim (3)

The loss values of the variation information Lvariation are calculated by the

Mean Square Error (MSE) between the predicted and the ground truth pitch, en-

ergy, and duration. Lmel is the Mean Absolute Error (MAE) between the predicted

and the ground truth Mel-spectrogram. For better audio fidelity, Lssim used SSIM

loss to measure the similarity between predicted and ground truth Mel- spectro-

gram.

2.3. Hifi-gan Vocoder

The Hifi-gan25 was used to generate high-fidelity speech from the predicted mel-

spectrogram, and the universal model was finetuned with the mel-spectrogram gen-

erated from FastSpeechStyle. The model noise was generated from the bias of the

vocoder with zero input, and then it was subtracted from the output speech signal.

2.4. Inference Strategy

Fig. 3. T-SNE visualization of emotional embeddings of all data.
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Fig. 4. T-SNE visualization of emotional embeddings of typical samples.

The emotion embedding vectors of all samples in the labeled dataset are visual-

ized in (Figure 3) using the t-SNE algorithm26. The figure’s four colors denote four

emotion clusters: angry, sad, happy, and neutral. Each emotion embedding sample

represented in the figure was generated by Mel Emotion Encoder with reference

audio in training data as input. It shows that the Mel Emotion Encoder model can-

not distinguish different types of emotion classes of all training data. The reason

is that there are too many emotional variants in each class. Therefore, the most

typical samples for each emotion, which clearly express the emotional level, were

selected to extract the distribution of emotion embedding.

Figure 4 visualizes the emotion embedding vectors of selected samples. It is

true that the Mel Emotion Encoder model has the capability of distinguishing dif-

ferent types of emotion classes if we can utilize the distribution of selected emotion

embedding vectors in the emotional vector space. So it is possible to control the

emotions of the FastSpeechStyle synthesis system if we establish a connection be-

tween the emotion and corresponding distribution. The simplest way is to create a

representation embedding vector for each emotion class by the element-wise average

of emotion embedding vectors included in each emotion cluster. During inference,

these vectors are used to synthesize desired emotions. The avg label in Figure 4

and Figure 3 denote the representation embedding vector of each emotion class.



May 9, 2023 17:27 output

8 Thinh et al.

3. Experiments

3.1. Experimental Setup

Dataset: the experiment dataset provided by the Vietnamese Language and Speech

Processing (VLSP) which is VLSP-EMO: Emotional Speech Dataset, includes

about 4.5 hours of a single speaker and four emotion labels: neutral, sad, happy,

and angry.

Preprocess: The text scripts of data are traversed through a dictionary and

converted to phonemes. Noise and breathing in the silence intervals of the audio

are filtered by a kaiser filter. Kaldi Forced Aligner27 is used to align phonemes and

each audio segment. Samples containing background noise or mismatches between

the script and audio will be removed. Explicit information such as pitch and energy

is generated before training by using World Vocoder28.

Model Configurations: We use the StyleSpeech19 model as a baseline. The

Encoder and Decoder of the baseline model are 6 FFTBlocks (Feed Forward Trans-

former Block1), and the Encoder, Decoder, and Variance Adaptor hidden dimen-

sions are 384. The output dimension of emotion embedding is 128. For the Proposed

FastSpeechStyle model, we use the same configuration as the baseline model. Six

Conformer Blocks were also used.

Training Experiments: The baseline and proposed model were trained with

the processed VLSP-EMO dataset on an NVIDIA Tesla A100 GPU. The batch

size of 64 sentences was used during training. We use AdamW29 with β1 = 0.9,

β2 = 0.98, ϵ = 10−9, and follow the same learning rate schedule as in Vaswani30.

3.2. Evaluation Metrics

The evaluation of text to speech system is very challenging, especially for the emo-

tional text to speech system. So, we conducted two subjective evaluations to mea-

sure the systems. The evaluation with MOS (Mean Opinion Score) was used for

naturalness and the naturalness score for each sample is from 1 to 5. The evaluation

with ESS (Emotion Similarity Score) was used for emotion similarity. The listeners

were asked to choose the closest emotion with an audio sample and give an emotion

similarity score from 1 to 100. If the selected emotion is different from the input

emotion when inference, then the emotion similarity score will be zero. The mean

value of all emotion similarity scores was reported as ESS. Both evaluations were

conducted with 100 audio samples as a test set and evaluated by 38 listeners. Each

listener had to evaluate 50 samples randomly selected from the test set.

3.3. Naturalness Evaluation

The naturalness was evaluated with the MOS metric on the baseline model, pro-

posed model, and ground truth. The audio samples of the baseline and proposed

models were generated with four emotion tags as input: angry, happy, neutral, and

sad. All output emotion audio samples and ground truth samples were evaluated
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by the MOS metric described above, and the results are shown in Table 1. It shows

that the proposed model achieved a higher naturalness score for all emotions. The

neutral emotion has the highest score in emotion classes, and the Ground truth has

the highest score. This show that emotional features negatively affect naturalness.

Table 1. Mean Opinion Score of Naturalness with 95% confidence intervals.

Model Angry Happy Neutral Sad

Baseline 3.488± 0.169 4.09± 0.131 4.108± 0.115 3.586± 0.133

Proposed 3.608± 0.146 4.157± 0.111 4.376± 0.115 3.766± 0.135

Ground Truth 4.542± 0.096

3.4. Emotion Similarity Evaluation

The evaluation of emotion similarity was completed with the ESS metric on the

baseline and proposed model. The results are shown in Table 3. The emotion sim-

ilarity score of the proposed model is slightly better than the baseline model. The

similarity score of angry is highest in emotion classes for both models, which means

this kind of emotion is easy to express. The emotion similarity score of happy is

nearly zero. Furthermore, the emotion embedding of happy samples, represented in

Figure 4, can be confused with neutral and angry samples. Those things lead to the

same conclusion that the happy emotion samples are difficult to distinguish from

angry and neutral emotions.

Table 2. Emotion Similarity Score with 95% confidence intervals.

Model Angry Happy Neutral Sad

Baseline 76.701± 3.697 3.886± 2.427 47.377± 5.05 48.141± 4.999
Proposed 77.232± 2.846 1.823± 1.619 48.988± 5.397 49.953± 5.157

3.5. Performance in the VLSP Challenge 2022

Our proposed TTS system was also submitted to the Emotional Speech Synthe-

sis Shared tasks in VLSP Challenge 2022. The provided training dataset is only

VLSP-EMO. The challenge uses two criteria for evaluation (shared task1 with only

the VLSP-EMO dataset), the MOS for naturalness and SUS31 (Semantically Un-

predictable Sentences) for intelligibility. The naturalness test was conducted by 320

utterances; 64 listeners, including males/females and expert/non-expert, were asked

to provide a score from 1 to 5. The intelligibility test was evaluated by 56 people

on the test set of 245 utterances. The results in Table 3 show that our proposed

system achieves the highest naturalness score while maintaining a high quality of

intelligibility.
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Table 3. VLSP TTS Chal-
lenge 2022 Results

System MOS SUS (%)

Proposed 4.131 44.5
A 3.403 52.7

B 3.941 49.4

C 3.875 38.1
D 3.822 39.0

E 2.719 72.3

F 3.938 42.9

4. Conclusion

We have proposed a FastSpeechSytle, a Fast and High-quality Emotional Speech

Synthesis model which can fast generate high-quality and expressive speech for

desired emotion. By applying improved Conformer to the FastSpeechStyle model,

we achieve significantly improved quality of emotional speech. For future work, we

plan to improve FastSpeechStyle to increase the naturalness of emotional speech,

such as angry or sad emotions.
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