

HCMUS at MediaEval 2020:

Emotion Classification Using Wavenet Features with SpecAugment and EfficientNet

Tri-Nhan Do, Minh-Tri Nguyen, Hai-Dang Nguyen, Minh-Triet Tran, Xuan-Nam Cao

Data analysis

Histogram of Audio length

Histogram of audio lenght Number of audio

Lenght of audio (s) (bin size = 10)

3 / 17

Histogram of mood and theme of training set

- The green part shows the audio with only one class
- The yellow part shows the audio with 2 to 3 classes,
- The red part shows the audio with more than 3 classes.
- The maximum number of moods of an audio is 8.
- Mood /theme that appears most is happy with 927 audios

Data Preprocessing

Features Processing

Mel-spectrogram

Each sample feature has 96 channels Time frames are randomly cropped to 6950 after each epoch

SpecAugment

0.139 PR-AUC-macro

0.139 PR-AUC-macro

- Each input have 70% chance to be augmented by using SpecAugment
- Each mel-spectrogram will have two blocks of time masking and two blocks of channel masking.

RESIDUAL AND SKIP CONNECTIONS

Figure 4: Overview of the residual block and the entire architecture.

Wavenet as Features for Classification

MUSIC ARTIST CLASSIFICATION WITH WAVENET CLASSIFIER FOR RAW WAVEFORM AUDIO DATA

Figure 1: Overview of the WaveNet based deep model architecture. The left part is wavenet for encoder and the right part is CNN for the final classification.

Emotion Recognition from Raw Speech using Wavenet

TABLE I

RECOGNITION ACCURACIES, NUMBER OF TRAINABLE PARAMETERS, TRAIN LOSS AND TEST LOSS OF WAVENET AND CNN+LSTM ARCHITECTURE FOR SER FROM RAW SPEECH USING EMO-DB DATASET.

Method	Parameter	Train loss	Test loss	Accuracy
Wavenet	29,562	0.4451	0.4024	83.82%
CNN+LSTM	16,736,324	0.0512	0.6217	73.52 %

Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders

- Use WaveNet-style autoencoder model
- This model was pretrained from high-quality dataset of musical notes Nsynth
- The output of a 30 seconds audio is 16 frames multiply with 937-time steps

Approach Overview

WaveNet features

Figure 2: Overview of submission 1.

EfficientNet

Try to use Efficient-B8 for Wavenet Feature

Experiment results

Method	Features and Model	PR-AUC-macro	
А	Mel-spectrogram EfficientNet-B0	0.127	
В	Mel-spectrogram EfficientNet-B0	0.134	
	with data processing		
C (run2)	Mel-spectrogram EfficientNet-B0	0.139	
	using augmentation		
D	WaveNet MobileNetV2	0.102	
E (run3)	WaveNet EfficientNet-B7	0.105	
F (run1)	Ensemble C and D	0.1413	
G (run4)	Ensemble C and E	0.1414	

- The EfficientNet model was shown to be more efficient than previous models
- Wavenet can be considered as a features from signal, can extract other aspects of the dataset.