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Abstract

This paper presents the submitted text-to-
speech system for VLSP 2022 Emotional
Speech Synthesis (ESS) Challenge. In this
year’s challenge, participants need to construct
an ESS system using emotional speech data
from a single speaker (task 1) and another
ESS system using data from a speaker with
only neutral speech (task 2). To address
these challenges, we propose an expressive
speech synthesis system which can synthe-
size high-quality expressive speech. The pro-
posed model includes two main components
(1) Mel Emotion Encoder extracts emotion em-
bedding from the Mel-spectrogram of audio,
(2) the FastSpeechStyle, a non-autoregressive
model, which is modified from vanilla Fast-
speech2. The FastSpeechStyle replaces normal
LayerNorm with Style Adaptive LayerNorm to
”shift” and “’scale” hidden features according
to emotion embedding, the model also used an
improved Conformer block instead of vanilla
FFTBIlock to better model the local and global
dependency in the acoustic model.

Index Terms: text-to-speech, emotional speech
synthesis, cross-speaker adaptation, style adaptive
layer.

1 Introduction

In the VLSP 2022 Emotional Speech Synthesis
Challenge, participants have to construct a syn-
thetic voice in 4 different emotions using the shared
training dataset. The challenge is divided into two
tasks:

* Task 1: To build a Text-to-Speech (TTS) sys-
tem that synthesizes four types of emotional
speech: neutral, sad, happy, and angry. The
training data consists of 4.5 hours of speech
data from a single speaker crawled from a
television drama.
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* Task 2: To adapt the TTS system in Task 1 to
a new speaker for whom the training data only
includes neutral utterances.

Participants are not allowed to use external
speech data or pre-trained TTS models for both
tasks. However, open-source pre-trained vocoders
are allowed to use due to the limited training data.
The output from each task undergoes subjective
evaluation through listening tests covering natural-
ness and emotion similarity.

With the advance of deep learning models,
speech synthesis systems have created synthetic
speech indistinguishable from human speech in
terms of naturalness. Besides linguistic informa-
tion, the speech also conveys information about
speaking styles, such as speaker identity, emotion,
and prosody. These types of information play a
crucial role in effective verbal communication with
a human. However, controlling this expressive in-
formation in synthetic speech remains challenging
for the current TTS systems.

In the VLSP 2022 ESS challenge, we used the
Fastspeech2 architecture as our backbone TTS
model (Ren et al., 2020). With the ability to ex-
plicitly control pitch, energy, and duration, Fast-
speech2 architecture is perfectly tailored to the
task. Furthermore, Fastspeech2 non-autoregressive
property proves more reliable and robust than
other autoregressive models that often suffer from
fail-alignment problems. To customize the Fast-
speech?2 architecture to the ESS task, we used the
Style Adaptive Layer Norm (SALN) based on the
Speaker Adaptive Layer Norm (Min et al., 2021)
(Arik et al., 2018), which condition the output Mel-
spectrogram by emotion embedding, we also re-
place the vanilla FFBlock (Ren et al., 2020) with
an improved Conformer Block to better model the
local and global dependency in the acoustic model
(Liu et al., 2021). A Mel Emotion Encoder was
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also used to generate emotion embedding from Mel
ground truth. The paper is organized as follows:
We present some related works in Section 2 before
describing our proposed TTS system in Section 3.
Then we show the experiment settings and evalua-
tion results in Section 4. Finally, we conclude our
paper in Section 5.

2 Related Work

The most common approach to emotional speech
synthesis (ESS) is to condition a TTS model with
expressive features. In supervised learning, the
emotion trait can be simply represented as a one-
hot encoded vector. Prosody features such as pitch,
energy, and duration can be estimated from text
and speech data before training the model to im-
prove the controllability of emotional speech. How-
ever, due to the discrete values of the one-hot en-
coded vector, such approaches can only synthesize
predefined emotions. Therefore, the limitation of
this method is emotion ambiguity and cannot show
properties such as degree of continuous emotion,
multi-label emotion, and emotion context depen-
dency

In an unsupervised manner that does not require
emotion-labeled data, expressive information can
be implicitly extracted by a reference encoder or us-
ing a variational autoencoder (Zhang et al., 2019).
Although this method can not interpret the emotion
of speech, the prosody can be continuously con-
trolled for each speaker. Variational autoencoder
(VAE) models try to model emotions in continu-
ous latent space with Gaussian prior and manipu-
late these latent variables for emotional synthesis
(Akuzawa et al., 2018). However, the drawback of
such approach is computation speed. Expressive in-
formation is conveyed in both text and speech: text
representations can be obtained from pre-training
(Kim et al., 2021)

The ESS task can be done with the above meth-
ods. However, it is inadequate to generate emotion
using only neutral training data in Task 2. Cross-
speaker style transfer could be a good approach.
(Ribeiro et al., 2022) were proposed a method us-
ing voice conversion to augment training data, but
this approach needs a large multi-speaker dataset
which is not allowed in task?2.

To handle all issues above, we proposed the same
expressive speech synthesis model architecture for
both tasks to synthesize emotional speech with a
set of emotion tags and a specific inference strategy

for each task to strengthen the emotion of speech.

3 Emotional Speech Synthesis System

Our architecture for Vietnamese ESS consists of
3 main components, a Mel Emotional Encoder to
extract information about prosody into an embed-
ding vector, an Acoustic Model to synthesize Mel-
spectrogram from input phonemes, and a Vocoder
for synthesizing speech from Mel-spectrogram.

3.1 Mel Emotional Encoder

The Mel Emotional Encoder (Emotion Encoder) is
based on the idea of the Reference Encoder (Skerry-
Ryan et al., 2018) to extract an emotion embedding
vector that contains emotional information of the
given speech. The architecture comprises three
parts (Min et al., 2021). The first module is spec-
tral processing with fully-connected layers to create
hidden features, the temporal processing module
is convolutional layers with residual connections
to learn the context information of the speech seg-
ments, and finally, the multi-head self-attention
mechanism is used to extract emotional informa-
tion. At the training stage, the input of the Emotion
Encoder is the ground truth Mel-spectrograms of
the corresponding text script.

3.2 FastSpeechStyle

For faster generation and improved stability, the
authors chose Fastspeech?2 as the backbone model
(Ren et al., 2020). This non-autoregressive acoustic
model consists of an Encoder to extract the contex-
tual information from the phoneme and a Variance
Adaptor with explicit variation information model-
ing, including duration, pitch, and energy predic-
tor, which adjusts the speed, tones, and loudness
of the voice. Finally, the Decoder to create Mel-
spectrogram, keeps the speaker’s timbre consistent.
The encoder and decoder of this customized Fast-
speech2 are Conformer modules conditioned by
emotional embedding through the Style Adaptive
Layer Norm.

3.2.1 Conformer

Conformer is a combination of transformer and
convolution modules. The Conformer for TTS
is slightly different from what is used for speech
recognition models (Liu et al., 2021). It is com-
posed of four stacked modules, a convolutional
feed-forward module, a depthwise convolution
module, a self-attention module and a second con-
volutional feed-forward module. The self-attention
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Figure 1: Emotional Speech Synthesis Architecture. Figure (a) shows the overall pipeline for FastSpeechStyle.
Figure (b) shows the improved Conformer block and the integration of emotional embedding through Adaptive

Layer Norm

of transformer extracts the global interaction, and
convolutions in CNNs capture the local correla-
tions.

3.2.2 Style Adaptive Layer Norm

There are many ways to integrate emotional embed-
ding into the encoder and decoder of the backbone
model, such as concatenation or element-wise ad-
dition with layers of Conformer. These methods
increase the number of parameters of the model
and achieve low adaptation quality.

The main idea of Style Adaptive Layer Norm
(SALN) is to “’scale and shift” hidden features
based on bias and gain conditioned by an emotional
vector (Min et al., 2021). By adjusting the bias and
gain values, the model can generate various styles
of speech and effectively synthesize speech in the
style of the target speaker with only one reference
sample.

SALN (h,w) = g(w)y + b(w) (1)

The affine layers, which is a single fully con-
nected layer, convert the emotion embedding w
to bias b and gain g respectively for each hidden
feature y in the formula 1. The LayerNorm in the

Conformer blocks will be replaced with the SALN
layer to change the style of the synthesized speech.

3.2.3 Loss Function

The loss function for the proposed acoustic model
includes the popular fastspeech2 loss functions
combined with a structural similarity index mea-
sure loss (SSIM) (Wang et al., 2004).

Lvam‘atz’on = Lpitch + Lduration + Lenergy (2)

Ltotal = Lvariation + Lmel + Lssim (3)

The loss values of the variation information are
MSE between the predicted and the ground truth
pitch, energy, and duration. Loss for predicted Mel-
spectrogram is calculated with MAE and SSIM to
measure the similarity for better audio fidelity.

3.3 Hifigan Vocoder

With limited data in the competition, training a
new vocoder model is not possible. Therefore, the
authors use a pretrain of the Hifigan model for
English that has been published (Kong et al., 2020),
then finetune with a ground-truth Mel-spectrogram
generated from the acoustic model on the provided
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Figure 2: t-SNE visualization of emotional embeddings
of all data.
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Figure 3: t-SNE visualization of emotional embeddings
of typical samples.

data. The noise generated by the model is removed
by subtracting the generated waveform from the
bias of the vocoder model with zero input.

3.4 Inference Strategy

The emotion embedding vectors of all samples in
Task1 dataset are visualized in (Figure 2) by using
the t-SNE algorithm (van der Maaten and Hinton,
2008). Four different colors in the figure denote
four emotion clusters: angry, sad, happy and neu-
tral. Each emotion embedding sample represented
in the figure was generated by Emotion Encoder,
using reference audio in training data. It shows
that the Emotion Encoder model cannot distinguish
different types of emotion classes of all training
data. The reason is there are too many emotional
variants of each class. Therefore, the most typical
samples for each emotion, which clearly express
the emotional level, were selected to extract the

distribution of emotion embedding.

Figure 3 visualizes the emotion embedding vec-
tors of selected samples. It’s true that the Emotion
Encoder model has the capability of distinguishing
different types of emotion classes if we can utilize
the distribution of selected emotion embedding vec-
tors in the emotional vector space. So we conclude
that it is possible to control the emotions of the
FastSpeechStyle synthesis system if we establish a
connection between the emotion and correspond-
ing distribution. The simplest way is to create a
representation embedding vector for each emotion
class by the element-wise average of emotion em-
bedding vectors included in each emotion cluster.
During inference, these vectors are used to synthe-
size desired emotions. The avg label in Figure 2
and Figure 3 denote the representation embedding
vector of each emotion class.

4 Experiment and Analysis

4.1 Data Analysis and Processing

Dataset for two tasks provided by the organizers
include:

* VLSP-EMO for task 1: Emotional Speech
Dataset includes about 5 hours of a single
speaker and four emotional labels: neutral,
sad, happy, and angry.

* VLSP-NEU for task 2: Neutral Speech
Dataset includes 4 hours of another speaker.

Text scripts of data are traversed through a dictio-
nary and converted to phonemes. Noise and breath-
ing in the silence intervals of the audios are filtered
by a kaiser filter. ForceAlignKaldi is used to per-
form alignment between phonemes and each audio
segment (McAuliffe et al., 2017). Samples contain-
ing background noise or have a mismatch between
the script and audio will be removed. Explicit in-
formation such as pitch and energy is preprocessed
before training by using PyWorld to estimate fun-
damental frequency.

4.2 Experiment

The authors use the same configuration and model
architecture for both tasks and train two tasks on
two corresponding datasets from scratch. The En-
coder and Decoder of customized Fastspeech2 are
6 Conformer blocks, and multi-head attention at
each block is set to 2. The Variance Adapter uses
3 predictors of pitch, energy, and duration with a



Task Emotion
Angry Neutral Sad Happy
Task1 MOS 3.593 4.118 3.43 3.759
ESS 63.95 49.509 42.333 7.294
Task? MOS 3.66 3.374 3.486 3.219
ESS 42.267 43.11 12.257 15.532

Table 1: The Mean Opinion Score (MOS) and Emotion Similarity Score (ESS) results.

convolutional hidden size of 384. With Reference
Encoder, 2 LinearNorm classes are used for spec-
tral processing. The temporal processing is two 1D
convolutional layers combined with residual skip
connections and 2 heads for the multi-head self-
attention module. The output emotion embedding
dimension is 128.

The proposed models were trained with a batch
size of 64 for subtask 1 and 24 for subtask 2, on a
Tesla A100 NVIDIA GPU. The model converges
after 100,000 iterations.

In the inference stage, we adapt the inference
strategy from the original, which was described in
22, for two tasks, Task1 and Task?2:

» Taskl: We adjust the speed of speech to in-
crease emotion strength by modifying dura-
tion predictor output in Variance Adaptor with
an experiment factor.

* Task2: The angry emotion is expressed clearly,
but two emotions, happy and sad, were mixed
with neutral, leading to a high false negative
for these emotions in prediction. Therefore,
during the inference of these emotions, the
output of pitch, energy, and duration in model
Taskl1 is used to replace the pitch, energy and
duration output of model Task2 and is then
added to the Variance Adaptor output. The
pitch and speed adjustment strategies are also
applied to increase emotion strength.

4.3 Internal Evaluation

We conducted an internal evaluation before submis-
sion. The models were evaluated on two main cri-
teria: naturalness and emotion similarity. A set of
200 sentences was used in this evaluation. Twenty
Vietnamese listeners participated in this experiment
via a web-based interface. Each subject listened
to 50 samples randomly selected from synthesized
audio. After listening, they were asked to give a
naturalness score for each sample from 1 to 5, and
then they needed to choose the closest emotion and

give an emotion similarity score from 1 to 100 to
complete the test. If the selected emotion is dif-
ferent from the input emotion when inference, the
emotion similarity score will be zero. The Mean
Opinion Score of naturalness and Emotion Simi-
larity Score is represented in Table 1. The results
show that the emotion similarity of angry, neutral,
and sad for both tasks is extremely strong. Mean-
while, happy can not be distinguished from other
emotions. The result also shows comparable qual-
ity in the aspect of naturalness.

5 Conclusion

Thanks to the VLSP competition, a new approach
to the Emotional Speech Synthesis problem was
proposed when applied to Vietnamese. The authors
demonstrate how to extract emotional vectors in an
unsupervised manner using the Reference Encoder.
The model can generate various emotions, thus
allowing us to control the influence of emotions in
a speech while retaining naturalness.
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